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Under a joint research and development effort conducted by the National Aeronautics 
and Space Administration and The Boeing Company (formerly McDonnell Douglas) three 
neural-network based control systems were developed and tested. The control systems were 
experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dy- 
namics Tunnel. One system used a neural network to schedule flutter suppression control laws, 
another employed a neural network in a predictive control scheme, and the third employed 
a neural network in an inverse model control scheme. All three of these control schemes 
successfully suppressed flutter to or near the limits of the testing apparatus, and represent 
the first experimental applications of neural networks to flutter suppression. This paper will 
summarize the findings of this project. 
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Introduction 
CTIVE control of aeroelastic phenomena will be- A come more prevalent on future flight vehicles. One 

of the key issues in gaining acceptance of such systems 
is reliability. Systems that can reliably adapt to sensor 
and actuator failures or plant changes will improve sys- 
tem reliability. Since neural networks can be trained to 
model dynamic systems, their use has been suggested 
for adaptive control and many studies proposing a va- 
riety of control system architectures have been studied. 
Some common types of algorithms include model refer- 
ence control where the neural network is used to model 
the plant and inverse control where the neural network is 
used to model the inverse of the plant. Studies to inves- 
tigate the aeronautical applications of neural networks 
have been much more limited. References 1, 2, and 3 
describe analytical studies where neural networks were 
applied to flight controls in either fixed wing or rotorcraft 
applications. These studies have focused on utilizing 
neural networks to achieve improvements in trajectory 
tracking. Studies to investigate the application of neural 
networks to controlling aeroelastic response (flutter and 
gust load alleviation, for example) have, however, been 
even more limited. The purpose of the present research 
is to investigate the use of neural networks for controlling 
aeroelastic response. 

The work described in this paper is part of the Adap- 
tive Neural Control of Aeroelastic Response (ANCAR) 
project. ANCAR was a joint research and development 
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effort conducted by the National Aeronautics and Space 
Administration, Langley Research 'Center and The Boe- 
ing Company (formerly McDonnell Douglas) under a 
Memorandum of Agreement. The goal of the program 
was to develop and demonstrate neural-network based 
adaptive control systems using the Benchmark Active 
Controls Technology (BACT) wind-tunnel model. The 
ANCAR program consisted of two phases. Phase I was 
the development and demonstration of a neural net- 
work gain scheduled flutter suppression system. Under 
Phase 11, two adaptive neural-network based control sys- 
tems were to be developed and demonstrated. These 
systems used predictive control and inverse model con- 
trol methodologies. This paper will summarize all the 
accomplishments of the ANCAR project; however, the 
majority of the paper will focus on the neural-network 
based inverse model system which has not previously 
been reported. 

The work presented in this paper was an exploratory 
study. Additional research is required to determine the 
merits of using neural networks for aeroelastic control. 
In addition to the neural-network based control systems, 
there were several other control systems tested using the 
BACT wind-tunnel model. These control systems in- 
clude those described in references 4 and 5. The control 
systems described in these papers were designed using 
classical or modern methods. While the performance of 
these control systems was not directly compared with 
the neural-network based control systems, it was appar- 
ent that they were significantly more robust than either 
the neural predictive or inverse model control systems. 
The neural gain scheduled system is based on classical 



control law design and its performance was qualitatively 
similar to the systems in references 4 and 5. 

Apparatus 
Transonic Dynamics Tunnel 

Wind-tunnel testing was conducted in the NASA Lan- 
gley Transonic Dynamics Tunnel (TDT).' The TDT is 
a single-return variable-density transonic wind tunnel. 
The slotted test section is 16 ft  by 16 ft square with 
cropped corners. The speed and pressure are indepen- 
dently controllable over a range of Mach number from 0.0 
to 1.2 (unblocked), and a range of stagnation pressures 
from near zero to one atmosphere. Either air or a heavy 
gas can be used as the test medium. The heavy gas used 
in these wind-tunnel tests was R-12, but the TDT has 
since been modified to  use R134a as the heavy gas. The 
TDT is also equipped with quick-opening bypass valves 
which can be activated to rapidly reduce test-section dy- 
namic pressure and Mach number when flutter occurs. 
The combinations of large scale, high speed, high density, 
variable pressure, and the bypass-valve system make the 
TDT ideally suited for aeroelastic testing. 

Wind-Tunnel Model 
The BACT wind-tunnel model is a rigid, rectangu- 

lar wing with an NACA 0012 airfoil section. It is 
equipped with a trailing-edge (TE) control surface and 
upper- and lower-surface spoilers, all independently con- 
trollable. The model is attached to a flexible mount 
system, the Pitch And Plunge Apparatus (PAPA), that 
allows both pitch and plunge degrees-of-freedom. An 
image of the model mounted in the TDT and a sepa- 
rate image showing only the model and mount system 
are shown in figure 1. The model is extensively instru- 
mented with pressure transducers and accelerometers to 
measure surface pressures and model dynamic response, 
and the mount system is instrumented with strain gauges 
to measure normal force and pitching moment. Parame- 
ters which could be varied during the test include Mach 
number, dynamic pressure, model angle-of-attack, and 
control surface deflection. Reference 7 contains a more 
detailed description of this wind-tunnel model. 

Neural Networks 
Neural networks have been studied for many years in 

a variety of fields. These fields include speech and image 
recognition, credit and insurance policy evaluation, and 
trajectory control to name a few. They have also been 
studied extensively for use in controlling dynamic sys- 
tems. The MATLAB Neural Network Toolbox Manual8 
provides an excellent overview of neural network appli- 
cations with many references. While numerous control 
system architectures and network types have been in- 
vestigated, this section of the paper will provide a brief 

Fig. 1 BACT wind-tunnel model. 
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summary of only the neural networks applied in this pa- 
per. 

The name neural network comes from the fact that the 
networks emulate the structure of the brain. In biological 
nervous systems, the output of one neuron is connected 
to  many other neurons. It is these connections that de- 
termine the function of the network. In practice, neural 
networks are composed of many computational elements 
or neurons operating in parallel. The general structure 
of an individual neuron is shown in figure 2. The func- 
tion of each neuron is to sum the weighted inputs (wij) 

and the bias ( b j )  and process this sum through a trans- 
fer function (f). The transfer functions considered in 
this study will be limited to the two shown in figure 2: 
a linear transfer function or a sigmoid transfer function 
(tanh). The use of a tanh or tan-sigmoid transfer func- 
tion allows the modeling of nonlinear effects. 

Two or more neurons can be used to form a layer and 
one or more layers forms a neural network. An example 
of the network structure used in this paper is shown in 
figure 3. This network consists of an input vector and 
two layers of neurons, a hidden layer and an output layer. 
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Fig. 3 Neural network with one hidden layer. 

Typically the output layer uses linear transfer functions 
and the hidden layer uses linear or tan-sigmoid transfer 
functions. This network structure is the simplest form of 
multilayer feedforward network. More hidden layers can 
be used, but no more than one hidden layer was used in 
this paper. Given sufficient neurons on the hidden layer, 
this type of network can approximate most functions ar- 
bitrarily well. 

Neural networks must be trained prior to use as pre- 
dictive models. Training is a common term in the field 
of neural networks and simply refers to the process by 
which the network weights and biases are selected. The 
training process begins by selecting or acquiring train- 
ing data, a set of input and output data for the plant or 
function to be approximated with the network. During 
the training process the weights and biases are adjusted 
until the error between the training data output and the 
network output is minimized. There are several meth- 
ods or algorithms for adjusting the network weights and 
biases. A common training method, and the one used 
in this paper, is backpropagation. Backpropogation is 
a gradient descent optimization algorithm that can be 
used on multilayer networks as long as the neurons have 
differentiable transfer functions. 

Gain Scheduler 
This section of the paper will summarize the imple- 

mentation and findings of the neural network gain sched- 
uled flutter suppression system described in reference 9. 
The objective of this system was to use a neural net- 
work to schedule flutter suppression control laws. The 
approach taken in this study was to  use a series of state- 
space models of the BACT wind-tunnel model to design 
classical single input single output (SISO) flutter sup- 
pression control laws. The state-space models were gen- 
erated using the Integrated Structures, Aerodynamics, 
and Controls (ISAC) code." The state-space models all 
used the same structural and aerodynamic models with 
Mach number (M) and dynamic pressure (4) being var- 
ied. In all, fifty six state-space models were used where 
Mach number varied from 0.3 to 0.9 and dynamic pres- 

sure varied from 75 to 250 psf. These models were used 
to  design a fixed-gain control law and to  design a series 
of control laws optimized to minimize accelerometer out- 
put for each combination of M and q. A neural network 
was used to  schedule the series of 56 optimized control 
laws. 

Fixed-Gain Control Law 
The fixed-gain feedback control law was designed to 

stabilize and minimize the wing response over the entire 
range of the state-space models. A washout filter was 
included in the compensation to eliminate any drift due 
to bias errors in the accelerometers. Root-locus pole and 
zero placement methods were used to design the fixed- 
gain robust feedback control law given below. 

s(s2 + 12s + 520) 
s4 + 27s3 + 491s2 + 4515s + 13050 

Neural-Network Scheduled Control Laws 
For the neural-network scheduled control laws, the 

control law described above was tailored for the pole-zero 
dynamics of each state-space model. Fifty-six custom de- 
signs were generated for the various M and q condition 
state-space models. All of the resulting control laws had 
the same order numerator (3 zeros) and denominator (4 
poles) as the robust fixed-gain control law. The general 
form of the these control laws is given below: 

53 + 0282 + a1s 

s4 + b3s3 + bzs2 + bls + bo 
k 

The neural network, shown in the lower portion of fig- 
ure 4, was trained using backpropagation to output the 
two numerator coefficients, the four denominator coef- 
ficients, and the overall gain as functions of M and q. 
The control law parameters used to train the neural net- 
work were in the continuous domain, rather than the 
discrete domain. This was required because continuous- 
domain coefficients vary smoothly as a function of M 
and q and do not require the high numerical precision of 
discrete-domain control law coefficients. The neural net- 
work outputs were transformed into the discrete domain 
before being transferred to the digital controller. 

Experimental Results 
The control system architecture that was implemented 

in the 1995 BACT wind-tunnel test is shown in figure 4. 
The trained neural network and Tustin (continuous-to- 
discrete) transformation was implemented on a Macin- 
tosh computer. As M and q were varied, the Macintosh 
computer transferred control laws to the real time sys- 
tem. The Active Digital Controller (ADC)ll was used as 
the real-time digital control system operating at a rate of 
200 Hz. The fixed-gain control law was also implemented 
on the ADC. 
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Fig. 7 Neural predictive control system architecture 

a linear single layer network or neural-network plant 
model. As depicted in this figure, the NPC system im- 
plemented in this study used a linear plant model to 
capture the input/output dynamics of the BACT model. 
This predictive plant model is then utilized in an on-line 
optimization scheme to select the optimal control val- 
ues for each control cycle. This system used a sample 
rate of 100 Hz, and each cycle had a duration of 0.01 
seconds. The plant model can initially be trained by 
exciting the actuators, measuring the sensor response, 
and training the plant model. This model can then be 
updated on-line to handle with changing conditions and 
time-varying plant dynamics. The plant model training 
portion of this system is performed in parallel with the 
closed-loop portion and is depicted by the error feedback 
to the plant model in figure 7. 

The method implemented for flutter suppression in- 
volves minimizing a cost function. The cost function, 
or performance index, is typically a quadratic function 
of the regulation/tracking error and required control in- 
put power. consequently, NPC is an optimal controller 
in the same sense that the Linear Quadratic Regulator 
(LQR) is optimal. The advantage of NPC over LQR lies 
in its capability to be easily extended to nonlinear sys- 
tems and to explicitly account for plant constraints in 
real time. 

A step-by-step description of the NPC algorithm is 
given below: 

1. Generate a reference trajectory, yd(n), which rep- 
resents the desired value of the future plant output 
(yd(n) = O for flutter suppression). 

2. Predict the future plant output, yp(n+l ) ,  using the 
plant model. This prediction is based on the current 
and past values of the plant input and output, u(n )  
and y(n),  and a new trialinput value, uk(n) .  For the 

BACT model u is the TE  control surface command 
and y is the TE accelerometer signal. 

3. Evaluate the performance of the trial input value 
according to a performance index based on the cost 
of regulation/tracking error and the required control 
input power. 

4. Repeat steps 2 and 3 with an optimization scheme 
until the termination criteria (desired performance 
or iteration limit) is achieved. 

5. Output the trial control value selected by the op- 
timization process to the plant. This is where the 
switch in figure 7 is moved from the down position 
to the up position so that the TE control surface 
command can be sent to  the physical model. After 
the signal is sent the switch is returned to the down 
position for the next control cycle. 

6. If on-line learning is engaged, update the plant 
model using a set of input/output data and an ap- 
propriate training algorithm. 

7. Repeat the entire process for each control cycle. 

The inputs to the plant model consist of time-delayed 
samples of the plant inputs, u ( n ) ,  and outputs, y(n), as 
shown in figure 7. For nonlinear control applications, a 
multi-layer neural network architecture with backpropa- 
gation training can be used. For linear plants, a linear 
autoregressive moving average (ARMA) model is used. 
The NPC architecture was implemented using a Pentium 
60 MHz PC with a plug-in Alacron neural accelerator 
board and analog input/output boards. The Pentium 
host CPU is responsible for all NPC computations and 
data transfer to the input/output and neural accelera- 
tor boards. The neural accelerator board performs the 
on-line model adaptation which occurs in parallel with 
the host CPU control loop computations. Due to several 
limitations of this hardware and software, only the linear 
ARMA plant models were considered in this study. 

Simulation Results 
The simulation studies were performed to design the 

appropriate plant model architecture, evaluate the ro- 
bustness of the controller, and validate the real time 
control software. Successful adaptation and control was 
demonstrated across the range of simulated wind tunnel 
conditions, with the NPC system running at a rate of 
100 Hz. One representative simulation time history is il- 
lustrated in figure 8 for an open-loop unstable condition, 
M=0.75 and q=175 psf. Starting with an untrained net- 
work, a white noise excitation signal was sent to the TE 
control surface for four seconds and the accelerometer 
response recorded providing 400 data points for neural 
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network learning. The learning then occurred during 
the next 2.7 seconds, allowing control to be activated at 
about 6.7 seconds. As shown in the figure, from t=3.9 to 
t=6.7, the wing response grew steadily due to open-loop 
flutter until the controller was initiated for flutter sup- 
pression. Once the system was activated, learning and 
control occur simultaneously, allowing model updates to 
occur every 6.7 seconds. The length of this time interval 
is determined by the speed of the processors, the control 
cycle rate, and the amount of data needed for accurate 
plant modeling. 

Experimental Results 

The NPC system was tested at  several M and q condi- 
tions along two H-lines. Testing began at the lower end 
of the H-line, in the open-loop stable region, with plant 
model learning activated. Dynamic pressure and Mach 
number were then gradually increased to conditions well 
beyond the open-loop flutter boundary. The continuous 
adaption of the plant model, which was one goal of the 
project, was not reliable enough to use for long periods 
of time. Periodically, the plant model generated by the 
on-line learning algorithm was not accurate enough and 
resulted in an unstable control system. Additional anal- 
ysis is necessary to isolate the root of the problem, but 
it may be related to the level of random noise used to 
excite the wing dynamics, the amount of data used for 
training, or tuning of the performance index used by the 
NPC system. 

After several unsuccessful attempts to operate in a 
fully adaptive mode, it was decided to activate learning 
only when a new model was required. Thus, for each 
H-line the plant model was generated at the low end 
of the H-line at an open-loop stable condition, and then 
learning was turned off, thereby freezing the plant model 
parameters. This arrangement was used to successfully 
suppress flutter along two H-lines as shown in figure 9. 

200 0 

190 1 " 7  

160 
Dynamic 
Pressure, 150 

+ Flutter Points 
0 0 Neural Predictive Control 

110 

100 
0.60 0.70 0.80 0.90 1 .oo 

Mach Number 

Fig. 9 NPC wind-tunnel data points. 

Inverse Model Control 
This section of the paper will provide a detailed de- 

scription of the application of neural networks and in- 
verse modelling to the control of aeroelastic response. 

Architecture 

The inverse modelling control architecture used in this 
study borrows elements from several proposed control 
schemes. This section of the paper will describe the 
relevant aspects of these systems and the system ar- 
chitecture implemented here. Inverse modelling control 
has generally been applied to trajectory tracking ap- 
plications. References 13, 14, and 15 describe several 
approaches to inverse modelling control and introduce 
several elements applicable to the present problem. In 
general, the key assumption in inverse model control is 
that an unknown plant can be made to track an input 
command signal when this signal is applied to a con- 
troller whose transfer function approximates the inverse 
of the plant's transfer function. An adaptive control 
system can be created by applying an adaptive inverse 
modelling process to the plant. A simple form of such 
a system is depicted in figure 10. The upper portion 
of this figure shows the training procedure. Here the 
arrow passing through the network box indicates the 
feedback of the error for training of the network using 
back propagation. The lower portion of figure 10 shows 
the implementation of the inverse model. In practice 
the adaptive inverse model will be continuously updated. 
Thus, no direct feedback is used, except that the plant 
output is monitored and utilized to adapt the parameters 
of the controller. 

The type of system just described is only suitable for 
minimum phase systems. The introduction of a time 
delay on the plant input used in the inverse modelling 
process allows one to obtain an approximate delayed in- 
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verse model to  both minimum and non-minimum phase 
plants. Reference 14 also suggests using a prefilter on the 
plant input signal. Both the time delay and prefilter con- 
cepts will be employed in this study to generate inverse 
plant models. As the aeroelastic control application in- 
vestigated here is not a trajectory following problem, 
the actual implementation of the inverse model in the 
control system will be different than that proposed by 
Widrow.13-15 The implementation of the inverse model 
in a closed-loop system is discussed next. 

The inverse model can take numerous forms including 
the one used here, a neural network. The implemen- 
tation of the neural-network inverse model used in this 
study is similar to that proposed in reference 16. Unlike 
many other studies, reference 16 suggests a relatively 
simple implementation where the neural network inputs 
and outputs are connected directly to the plant like a 
standard feedback controller. The present implementa- 
tion will use this approach. However, unlike reference 
16 which used perceptron neural networks trained us- 
ing genetic algorithms, the present application will use 
a two-layer feed-forward neural network trained using 
back-propagation. 

The present implementation of the inverse modelling 
approach is shown in figure 11. The upper part of the fig- 
ure shows the acquisition of training data and the off-line 
network training procedure. The input to the network 
is one of the BACT model’s accelerometer signals. As 
indicated on the figure, the input to the network is made 
up of the current and delayed values of this signal. The 
number of time-delayed inputs used can be varied. Also, 
as discussed earlier, the model input signal used to train 
the network is delayed and filtered prior to used. The 
data acquisition was performed using the ADCll sam- 
pling at  200 Hz. The network training was performed 
off-line using the MATLAB software. The time delay 

Prefilter 

a) Data acquisition and controller training. 

TE Control 

_ -  

b) Controller implementation. 

Fig. 11 Inverse model control system architecture. 

(A) was an integer number of time steps. The prefilter 
was implemented using the MATLAB FILTFILT func- 
tion. This function digitally filters the data in both the 
forward and reverse directions. The result has zero phase 
distortion with a magnitude modified by the square of 
the filter’s magnitude response. The prefilter is tailored 
to have a peak magnitude near the frequency of the 
physical phenomenon to be controlled. For flutter sup- 
pression, the flutter frequency is used. 

The lower portion of figure 11 shows the implementa- 
tion of a trained network. Here the network is inserted 
in the control loop with the the BACT model’s TE con- 
trol surface command as the output of the network. This 
control system also was implemented on the ADC” sam- 
pling at 200 Hz. The gain, IC, on the output signal could 
be varied on-line. 

The following steps summarize the operation of this 
system. 

1. Send excitation signal to the BACT model recording 
both the excitation (TE control surface command) 
and the model response (accelerometer signal). 

2. Train the network using delayed and filtered excita- 
tion signal and BACT accelerometer response time 
history. 

3.  Implement trained network on the real-time system. 
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Inverse model control system simulation 

Prior to implementation of this system, many parame- 
ters were explored using the simulation model discussed 
in the next section. 

Simulation Model 

The simulation model developed by W a s ~ a k ~ ~ ~ ' ~  was 
used in this study. The model was formed by combin- 
ing the equations of motion for the BACT wind-tunnel 
model with actuator models and a model of wind-tunnel 
turbulence. Wherever possible, the numerical model pa- 
rameters were determined experimentally. The mass and 
inertia parameters were obtained by measuring the mass, 
stiffness, and damping properties of the BACT flexible 
mount. The static aerodynamic parameters were deter- 
mined from experimental data when the BACT model 
was mounted to a five-degree-of-freedom balance.' The 
dynamic derivatives were obtained computationally us- 
ing 1SAC.l' The numerical values for the static and 
dynamic stability and control derivatives are only valid 
at a single Mach number of 0.77; however, the dynamic 
pressure for the model could be changed. The analyt- 
ical flutter boundary for this simulation model occurs 
a t  a dynamic pressure of 150.8 psf. Figure 12 shows 
the version of the simulation model used in this study. 
The BACT equations of motion and actuator models 
developed by Waszak are contained in the appropriately 
labeled blocks. The turbulence model in the upper left 
portion of the model is based on a Dryden spectrum 
with parameters tuned to  match power spectrum data 
obtained in the TDT. The other elements of the block 
diagram were added for this investigation. 

The primary changes to  the model developed by 
Waszak included the addition of the neural-network con- 
trol blocks and numerous other gain blocks. The control 
system studies in this investigation were SISO so the gain 
blocks were included to allow the same SIMULINKl' 

' 

model to be used for either accelerometer signal (trail- 
ing edge or leading edge) or either control surface (TE 
control surface of upper spoiler) without changing the 
model. For instance, if the gains on the upper spoiler 
control signal and the gain on the leading edge ac- 
celerometer signal are both zero, the resulting system 
would be SISO utilizing the TE  control surface and the 
TE  accelerometer. This was the configuration considered 
in this investigation. In addition, excitation generators 
and their associated gains were introduced for obtaining 
training data and for studying the effects of noise and 
turbulence. 

Several parameters that could also be varied but are 
not shown in figure 12, include the number of hidden 
layers on the neural network and the number of time- 
delayed network inputs. The hidden layer could be either 
linear or nonlinear. 

Parametric Variations 
This section of the paper will present results from sev- 

eral parametric variations using the simulation model 
described above. First, a few words about how these 
parametric studies were performed. The primary objec- 
tive of this system is flutter suppression and the per- 
formance of the control system will be evaluated at a 
dynamic pressure where the model is open-loop unsta- 
ble, 175 psf. The data for training the network must be 
obtained initially at a dynamic pressure were the model 
is open-loop stable. The initial training was obtained 
from an open-loop simulation using a dynamic pressure 
of 133 psf where a pseudo-random noise (PPN) or lin- 
ear sign sweep (LSS) input was used to drive the TE  
control surface. Both excitation signals had frequency 
content between 0 and 12 Hz. The prefilter for the flutter 
suppression applications was selected to have peak mag- 
nitude of unity in the vicinity of the flutter frequency of 
the BACT model. The prefilter used for flutter suppres- 
sion control laws is shown below. 

-431. IS 
s3 + 1 9 . 6 ~ ~  + 811.6s + 2529.8 

It has a peak magnitude of unity at 4 Hz and significant 
washout below and rolloff above this target frequency. 

In all the parametric results presented, the RMS val- 
ues of the TE  accelerometer and the T E  control sur- 
face will be plotted against the parameter being varied. 
Lower is better and values off the scale of the plot indi- 
cate that the system is not stable. The value of A, the 
number of time delays used in training the network, is 
a very important parameter and will often be used as 
the independent variable in these plots. The nominal 
simulation parameters are as follows 

Network Controller: 
Hidden Nodes = 6 
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system response with and without the use of the pre- 
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The first issue to be explored is the use of the pre- 
filter. Figure 13 shows a comparison of linear controller 
performance where the linear network controllers were 
trained with and without the prefilter. The compar- 
ison shows that a controller that will suppress flutter 
can be obtained without using the prefilter, but it will 
have poor robustness properties. Typically, an accept- 
able flutter suppression control system will have control 
surface RMS values significantly below unity. Without 
the prefilter, only one value of A achieves acceptable 
control system performance. 

The next parametric variation considered a linear net- 
work where A and the turbulence gain were varied. The 
turbulence gain was varied for the open-loop simulations 
where the training data was acquired. A gain of three 
was used to evaluate the closed-loop performance. This 
data is shown in figure 14. From these data, it is ap- 
parent that a time delay between 25 and 35 achieves the 
best performance. It can also be observed that moder- 
ate levels of turbulence improve the performance of the 
network controllers. 
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Fig. 14 
formance for varying A and turbulence gain. 
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Fig. 15 Comparison of nonlinear inverse model con- 
trol system response with and without the use of the 
prefilter. 

The use of a nonlinear network (sigmoid transfer func- 
tion on the hidden layer) is now considered. Figure 15 
shows a comparison between nonlinear networks trained 
with and without a prefilter as a function of A.  An im- 
portant feature of the nonlinear result is that while the 
system may become unstable, the control command is 
limited by the saturation of the sigmoid transfer func- 
tions. Otherwise, the linear and nonlinear network con- 
trollers achieve similar levels of performance. To further 
explore the use of nonlinear network controllers, the tur- 
bulence gain and prefilter were varied. Figure 16 shows 
a comparison of the performance of nonlinear network 
controllers where the training data was obtained using 
various values of the turbulence gain. As with the lin- 
ear case, moderate levels of turbulence were found to be 
desirable. 

The next parameter to be considered in this study 
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Fig. 17 Inverse model controller performance as a 
function of the number of delayed network inputs. 
A=25. 

was the number of delayed inputs to use on the network 
controller. Figure 17 shows a comparison of performance 
of a linear and nonlinear network where the number of 
time-delayed inputs was varied from 0 to 60. The value of 
A in these analyses was 25. The systems were evaluated 
at two dynamic pressures, 175 psf and 195 psf. At 175 
psf dynamic pressure, the performance of the system was 
insensitive to the number of time delays, but at 195 psf 
dynamic pressure, a minimum value of 15 time delays 
was required. 

The final parameter considered is the excitation type 
used to obtain the training data. So far only a PPN 
excitation has been used. A comparison of PPN results 
with those obtained using a LSS excitation is presented 
in figure 18 for both linear and nonlinear controllers. 
Both types of excitations yield controllers with similar 
performance, but the PPN excitation appears to have a 
slight advantage over the LSS excitation. 
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Fig. 18 
trollers trained using PPN and LSS excitation. 

Linear and nonlinear inverse model con- 

This completes the discussion on the inverse model 
control parametric studies. Note that not all param- 
eters were varied. Future studies should consider the 
use of the leading accelerometer sensor and the use of 
the spoiler. The amplitude of the control surface excita- 
tion was not varied, and sensor noise was not considered 
at all. The only control systems considered were SISO, 
yet the simulation model can be modified to use both 
leading-edge and trailing-edge accelerometers as input 
signals to the controller. Finally, a truly adaptive sys- 
tem needs to continually re-acquire data and train new 
inverse model controllers as the plant changes. This was 
not considered in the present study. 

Experimental Results 

This section of the paper describes experimental re- 
sults for application of inverse modelling control to the 
BACT model during the 1996 wind-tunnel test. The 
networks used during this wind-tunnel test all had 25 
time-delayed inputs to the network and 6 nodes on the 
hidden layer. These controllers were SISO with the in- 
put coming from the TE  accelerometer and the output 
being sent to the TE  control surface. Unless otherwise 
noted, the prefilter used is the same as that described in 
the preceding subsection. Due to time constraints only 
a limited number of parameter variations were explored 
experiment ally. 

Two inverse model flutter suppression control systems 
were demonstrated. Figure 19 shows a portion of the 
TDT operating envelope with the BACT open-loop flut- 
ter boundary superimposed. The two inverse model 
control systems are designated A and B. System A was 
trained using data acquired at conditions well below 
the open-loop flutter boundary (M=0.65, q=133 psf). 


